_security_main |
"O:75:"Symfony\Component\Security\Http\Authenticator\Token\PostAuthenticationToken":2:{i:0;s:4:"main";i:1;a:5:{i:0;O:15:"App\Entity\User":9:{s:19:"\x00App\Entity\User\x00id";i:183;s:22:"\x00App\Entity\User\x00email";s:21:"max.marian@ing.puc.cl";s:26:"\x00App\Entity\User\x00userRoles";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:1;}s:25:"\x00App\Entity\User\x00password";s:16:"104ea3e3d450aa2a";s:21:"\x00App\Entity\User\x00name";s:3:"Max";s:25:"\x00App\Entity\User\x00lastName";s:6:"Marian";s:20:"\x00App\Entity\User\x00rut";s:8:"27753710";s:20:"\x00App\Entity\User\x00sex";s:1:"M";s:23:"\x00App\Entity\User\x00author";O:17:"App\Entity\Author":5:{s:21:"\x00App\Entity\Author\x00id";i:186;s:31:"\x00App\Entity\Author\x00researcherId";s:13:"AAB-3558-2019";s:27:"\x00App\Entity\Author\x00daisngId";N;s:23:"\x00App\Entity\Author\x00user";r:4;s:37:"\x00App\Entity\Author\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:27:{i:0;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6930;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1456;s:29:"\x00App\Entity\Publication\x00title";s:80:"Evaluation of DLC, MoS2, and Ti3C2Tx thin films for triboelectric nanogenerators";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000791273400002";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:2:"97";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"JUN 15";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:28:"10.1016/j.nanoen.2022.107185";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1397:"Due to their cost-effective fabrication, easy integration, and low frequency working range, triboelectric nano generators (TENGs) demonstrate tremendous potential in green energy harvesting to power smart devices and the internet of things (IoT). However, there is an urgent need to synergistically maximize their output and improve their durability to ensure a long-lasting high performance. This study aims at elucidating the performance of protective thin films deposited on the wear-prone PTFE surface of TENGs including doped and undoped, single-and multi-layer hydrogenated DLC films, MoS2 coatings fabricated by physical vapor deposition and multi-layer Ti3C2Tx (MXene) films. The deposited coatings are characterized by electron microscopy, and Raman spectroscopy. Their triboelectric performance is analyzed for TENGs operating in contact separation and freestanding sliding modes. We verified that MXenes outperformed the other films in contact separation mode due to the good electron gain ability of functional oxygen and fluorine groups. In sliding mode, the undoped a-C: H coating performed on a comparable level to the uncoated reference and superior to the tungsten-doped DLC and MoS2 films. The film withstood long-term tests without notable signs of wear; merely the output slowly decreased with time due to graphitization and thus potential material transfer to the mating body.";s:34:"\x00App\Entity\Publication\x00timesCited";i:5;s:35:"\x00App\Entity\Publication\x00fundingText";s:364:"Acknowledgements B. Rothammer greatly acknowledges the continuous support of Friedrich-Alexander-University Erlangen-Nuremberg (FAU) , Germany. S. Wartzack from Engineering Design, FAU Erlangen-Nuremberg, Ger-many, is thanked for providing resources for coating deposition. M. Marian greatly acknowledges the continuous support of Pontificia Uni-versidad de Chile.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:700;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:1;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6933;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1457;s:29:"\x00App\Entity\Publication\x00title";s:93:"Combining surface textures and MXene coatings-towards enhanced wear-resistance and durability";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000825850600001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"3";s:30:"\x00App\Entity\Publication\x00volume";s:2:"10";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:5:"SEP 1";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:24:"10.1088/2051-672X/ac7f4a";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1191:"Surface texturing has gained significant attention over the last 30 years to tailor friction and wear under various tribological conditions in fundamental and applied tribological systems. Under dry conditions, surface textures help to improve friction or wear by reducing adhesion and the real area of contact as well as trapping wear particles. However, especially under high load conditions, surface textures rapidly wear away, thus losing their friction- and wear-reducing capability. A potential strategy to improve their durability under more severe conditions is the combination with protective solid lubricant coatings. In this regard, MXene nano-sheets are the most recent success story related to 2D materials as solid lubricant coatings. They appear particularly interesting due to their ability to generate low-friction and wear-resistant tribo-films thus providing an excellent durability and wear resistance. This aspect makes the combination of MXene solid lubricant coatings and surface textures highly prospective. Therefore, this perspective aims at summarizing and analyzing the existing state-of-the art related to the combined use of surface textures and MXene coatings.";s:34:"\x00App\Entity\Publication\x00timesCited";i:1;s:35:"\x00App\Entity\Publication\x00fundingText";s:303:"A Rosenkranz gratefully acknowledges the financial support given by ANID within the projects Fondequip EQM190057 and Fondecyt Regular 1220331 as well as the University of Chile in the project U-Moderniza UM-04/19. M. Marian greatly acknowledges the support from Pontificia Universidad Catolica de Chile.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:701;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:2;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6934;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1458;s:29:"\x00App\Entity\Publication\x00title";s:81:"Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements-A Review";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000729422100001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"3";s:30:"\x00App\Entity\Publication\x00volume";s:1:"9";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"JAN";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:22:"10.1002/admi.202101622";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1117:"Recent advances in 2D nanomaterials, such as graphene, transition metal dichalcogenides, boron nitride, MXenes, allow not only to discover several new nanoscale phenomena but also to address the scientific and industrial challenges associated with the design of systems with desired physical properties. One of the great challenges for mechanical systems is associated with addressing friction and wear problems in machine elements. In this review, the beneficial properties of layered 2D materials that enable the control of their tribological behavior and make them excellent candidates for efficient friction and wear reduction in dry-running and boundary lubricated machine components are summarized. The recent studies highlighting the successful implementation of 2D structures when used as solid lubricant coatings or reinforcement phases in composites for various machine components including sliding and rolling bearings, gears, and seals are overviewed. The examples presented in the studies demonstrate the great potential for 2D materials to address the energy-saving needs by friction and wear reduction.";s:34:"\x00App\Entity\Publication\x00timesCited";i:38;s:35:"\x00App\Entity\Publication\x00fundingText";s:563:"M.M. greatly acknowledges the financial support from Pontificia Universidad Catolica de Chile. D.B. acknowledges the support of this work by the National Science Foundation (NSF) (Award No. 2018132). An.R. gratefully acknowledges the financial support given by ANID-CONICYT within the projects Fondecyt 11180121 and Fondequip 140142 as well as the VID of the University of Chile in the framework of U-Inicia UI013/2018. An.R. also acknowledges the financial support of the Chinese Academy of Sciences President's International Fellowship Initiative (2020VEC0006).";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:702;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:3;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6939;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1459;s:29:"\x00App\Entity\Publication\x00title";s:71:"Predicting EHL film thickness parameters by machine learning approaches";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000809743800002";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";N;s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"JUN 12";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:25:"10.1007/s40544-022-0641-6";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1493:"Non-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the full-system finite element (FE) solution and a Latin hypercube sampling. We verify that the original input data are required to train ML approaches to achieve coefficients of determination above 0.99. It is revealed that the architecture of artificial neural networks (neurons per layer and number of hidden layers) and activation functions influence the prediction accuracy. The impact of the number of training data is exemplified, and recommendations for a minimum database size are given. We ultimately demonstrate that artificial neural networks can predict the locally-resolved film thickness values over the contact domain 25-times faster than FE-based EHL simulations (R-2 values above 0.999). We assume that this will boost the use of ML approaches to predict EHL parameters and traction losses in multibody system dynamics simulations.";s:34:"\x00App\Entity\Publication\x00timesCited";i:23;s:35:"\x00App\Entity\Publication\x00fundingText";s:398:"M. Marian greatly acknowledges the support from Pontificia Universidad Catolica de Chile. A. Rosenkranz gratefully acknowledges the financial support given by ANID (Chile) in the framework of the Fondecyt projects (Nos. 11180121 and EQM190057). Additionally, A. Rosenkranz acknowledges the financial support given by the VID of the University of Chile within the project U-Moderniza (No. UM-04/19).";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:703;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:4;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6946;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1460;s:29:"\x00App\Entity\Publication\x00title";s:50:"Machine Learning in Tribology-More than Buzzwords?";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000786352000001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"4";s:30:"\x00App\Entity\Publication\x00volume";s:2:"10";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"APR";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.3390/lubricants10040068";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";N;s:34:"\x00App\Entity\Publication\x00timesCited";i:3;s:35:"\x00App\Entity\Publication\x00fundingText";N;s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:704;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:5;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6947;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1461;s:29:"\x00App\Entity\Publication\x00title";s:82:"Numerical micro-texture optimization for lubricated contacts-A critical discussion";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000784849200001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";N;s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"APR 19";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:25:"10.1007/s40544-022-0609-6";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1034:"Despite numerous experimental and theoretical studies reported in the literature, surface micro-texturing to control friction and wear in lubricated tribo-contacts is still in the trial-and-error phase. The tribological behaviour and advantageous micro-texture geometries and arrangements largely depend on the contact type and the operating conditions. Industrial scale implementation is hampered by the complexity of numerical approaches. This substantiates the urgent need to numerically design and optimize micro-textures for specific conditions. Since these aspects have not been covered by other review articles yet, we aim at summarizing the existing state-of-the art regarding optimization strategies for micro-textures applied in hydrodynamically and elastohydrodynamically lubricated contacts. Our analysis demonstrates the great potential of optimization strategies to further tailor micro-textures with the overall aim to reduce friction and wear, thus contributing toward an improved energy efficiency and sustainability.";s:34:"\x00App\Entity\Publication\x00timesCited";i:8;s:35:"\x00App\Entity\Publication\x00fundingText";s:388:"Max MARIAN greatly acknowledges the support from Pontificia Universidad Catolica de Chile. Andreas ALMQVIST acknowledges the financial support from The Swedish Research Council (VR): DNR 2019-04293. Andreas ROSENKRANZ gratefully acknowledges the financial support given by ANID within the project Fondequip EQM190057 as well as the University of Chile in the project U-Moderniza UM-04/19.";s:31:"\x00App\Entity\Publication\x00journal";r:287;s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:6;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6952;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1462;s:29:"\x00App\Entity\Publication\x00title";s:86:"A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000763717600001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"2";s:30:"\x00App\Entity\Publication\x00volume";s:2:"10";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"FEB";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.3390/lubricants10020018";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1493:"Within the domain of tribology, enterprises and research institutions are constantly working on new concepts, materials, lubricants, or surface technologies for a wide range of applications. This is also reflected in the continuously growing number of publications, which in turn serve as guidance and benchmark for researchers and developers. Due to the lack of suited data and knowledge bases, knowledge acquisition and aggregation is still a manual process involving the time-consuming review of literature. Therefore, semantic annotation and natural language processing (NLP) techniques can decrease this manual effort by providing a semi-automatic support in knowledge acquisition. The generation of knowledge graphs as a structured information format from textual sources promises improved reuse and retrieval of information acquired from scientific literature. Motivated by this, the contribution introduces a novel semantic annotation pipeline for generating knowledge in the domain of tribology. The pipeline is built on Bidirectional Encoder Representations from Transformers (BERT)-a state-of-the-art language model-and involves classic NLP tasks like information extraction, named entity recognition and question answering. Within this contribution, the three modules of the pipeline for document extraction, annotation, and analysis are introduced. Based on a comparison with a manual annotation of publications on tribological model testing, satisfactory performance is verified.";s:34:"\x00App\Entity\Publication\x00timesCited";i:1;s:35:"\x00App\Entity\Publication\x00fundingText";s:263:"P. Kugler, B. Schleich and S. Wartzack gratefully acknowledge the financial support of project WA 2913/22-2 within the Priority Program 1921 by the German Research Foundation (DFG). M. Marian acknowledges the support from Pontificia Universidad Catolica de Chile.";s:31:"\x00App\Entity\Publication\x00journal";r:359;s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:7;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6959;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1463;s:29:"\x00App\Entity\Publication\x00title";s:130:"Experimental investigation of friction in compliant contact: The effect of configuration, viscoelasticity and operating conditions";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000719916100001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"165";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"JAN";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.triboint.2021.107340";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:874:"This work investigates the effects of kinematic conditions, configuration, viscoelasticity, and lubricant viscosity on friction in lubricated compliant contacts. Experimental data were also used to develop a numerical simulation capable of predicting fluid friction in compliant contacts. Mini Traction Machine (MTM) in the ball-on-disc configuration was used to successfully gain insight into the behaviour of compliant contacts, allowing the investigation of the mentioned effects. The findings have confirmed that viscoelastic effects are present in all configurations, being soft-on-hard (S/H), hard-on-soft (H/S) and soft-on-soft (S/S), where they seem to be more profound in the configurations using compliant discs. The experimental data also suggest that the slide-to-roll ratio affects rolling friction in all configurations which is contrary to current literature.";s:34:"\x00App\Entity\Publication\x00timesCited";i:1;s:35:"\x00App\Entity\Publication\x00fundingText";s:325:"This work was supported by the Czech Science Foundation (Project No. 18-26849J) . The author would also like to give his thanks to doc. Ing. Radek Kalousek, Ph.D. from the Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic for the valuable consultations.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:658;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:8;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6964;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1464;s:29:"\x00App\Entity\Publication\x00title";s:93:"Correlating wine astringency with physical measures - Current knowledge and future directions";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000698745600005";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"296";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"OCT";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2021;s:27:"\x00App\Entity\Publication\x00doi";s:25:"10.1016/j.cis.2021.102520";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1265:"Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory effects when interacting with components of the human mouth. One important aspect covers the astringency produced by wine, which can be described as the sensation of dryness and puckering in the mouth, specifically occurring between the tongue and the palate after swallowing. Therefore, this article aims at shedding some light on recent trends to correlate physical measures, such as the coefficient of friction derived by oral tribology, with prevailing theories on underlying physiological causes for sensory perception of wines. Some successful cases reported the potential of correlating wine astringency perception with the coefficient of friction in tribological experiments. Our critical assessment demonstrates that the findings are still contradictory, which urgently asks for more systematic studies. Therefore, we summarize the current challenges and hypothesize on future research directions with a particular emphasis on the comparability, reproducibility and transferability of studies using different experimental test-rigs and procedures.";s:34:"\x00App\Entity\Publication\x00timesCited";i:1;s:35:"\x00App\Entity\Publication\x00fundingText";s:574:"A. Rosenkranz gratefully acknowledges the financial support given by ANID-CONICYT within the project Fondecyt 11180121 as well as the VID of the University of Chile in the framework of "U-Inicia UI013/2018". M. Marian would like to thank Friedrich-Alexander-University Erlangen-Nuremberg (FAU) for the continuous support. E. Bordeu and N. Brossard are grateful for the financial support given by the National Agency of Research and Development (ANID)/Sub-direction of Applied Research through the Scientific and Technological Development Promotion Fund (Fondef), ID18i10246.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:705;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:9;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:6978;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1465;s:29:"\x00App\Entity\Publication\x00title";s:102:"Evaluation of the surface fatigue behavior of amorphous carbon coatings through cyclic nanoindentation";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000608631200012";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"407";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"FEB 15";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2021;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.surfcoat.2020.126769";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:2085:"Diamond-like carbon (DLC) coatings, frequently used to reduce wear and friction in machine components as well as on forming tools, are often subjected to cyclic loading. Doping of DLC coatings with metals or metal carbides as well as the usage of multilayer architectures represent promising approaches to enhance toughness, which is beneficial for the coatings' behavior under cyclic loading. In this study, we utilized cyclic nanoindentation to characterize the tribologically induced surface fatigue behavior of single-layer tungsten-doped (a-C:H:W) and multilayer silicon oxide containing (a-C:H:Si:O/a-C:H)(25) amorphous carbon coatings under cyclic loading. Columnar growth was observed for both coatings by focused ion beam microscopy and scanning electron microscopy, while the multilayer architecture of the (a-C:H:Si:O/a-C:H)(25) coating was verified by the silicon content using glow-discharge optical emission spectroscopy. In cyclic nanoindentation of the (a-C:H:Si:O/a-C: H)(25) multilayer coating, stepwise small changes in indentation depth were observed over several indentation cycles. The surface fatigue process of the single-layer a-C:H:W covered a smaller number of indentation cycles and was characterized by an early steep increase of the static displacement signal. Microscopical analyses hint at grain deformation, sliding at columnar boundaries, and grain detachment as underlying fatigue mechanisms of the a-C:H :W coating, while the (a-C:H: Si : O/a-C:H)(25) multilayer coating showed transgranular crack propagation and gradual fracturing. In case of the (a-C:H:Si:O/a-C:H) 25 multilayer coating, superior indentation hardness (H-IT) and indentation modulus (E-IT) as well as a higher H-I(T)3/E-IT(2) ratio suggest a higher resistance to plastic deformation. A high H-I(T)3/E-IT(2) ratio, being an indicator for hindered crack initiation, combined with the capability of stress relaxation in soft layers contributed to the favorable surface fatigue behavior of the (a-C:H:Si:O/a-C:H)(25) multilayer coating observed in this cyclic nanoindentation studies.";s:34:"\x00App\Entity\Publication\x00timesCited";i:15;s:35:"\x00App\Entity\Publication\x00fundingText";s:1004:"The authors greatly acknowledge the continuous support of the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre for sheet-bulk metal forming (TCRC 73, Subproject B4). Additionally, the authors are grateful for the support of Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), Germany. Furthermore, Dipl.-Ing. U. Wolf from Engineering Design (FAU) is thanked for her assistance in the mechanical characterization of the coatings. B. Rothammer, M.Sc. from Engineering Design (FAU) is thanked for the fruitful discussions. A. Rosenkranz gratefully acknowledges the financial support given by ANID-CONICYT within the project Fondecyt 11180121 as well as the VID of the University of Chile in the framework of "U-Inicia UI013/2018". F. Pineda and M. Walczak acknowledge Fondequip EQM160091 for funding glow-discharge optical emission spectroscopy (GD-OES). B. Merle acknowledges the German Research Foundation (DFG) for funding through grant ME-4368/8.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:521;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:10;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13480;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1784;s:29:"\x00App\Entity\Publication\x00title";s:133:"Experimental study on the tribological behavior of ceramic disks for application in mixer taps under different lubrication conditions";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000962321700001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";s:7:"765-772";s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"7";s:30:"\x00App\Entity\Publication\x00volume";s:2:"75";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"AUG 18";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:24:"10.1108/ILT-11-2022-0334";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1746:"Purpose - The evaluation of the haptics of water taps and wear-related changes during usage usually involves time- and cost-intensive testing. The purpose of this paper is to abstract the tribo-system between technical ceramic disks of water tap mixer cartridges to the model level and study the tribological behavior.\nDesign/methodology/approach - The friction and wear behavior was studied by means of an alumina ball-on-original alumina disk setup at different temperatures as well as under dry conditions and under lubrication by different greases. Thereby, the frictional behavior was measured in situ, and the wear losses were analyzed by means of laser scanning microscopy.\nFindings - It was shown that friction and wear can behave in a contrasting way, whereby one grease might lead to low friction, that is, an easygoing movability of the water tap, but to increased wear losses. The latter, in turn, is an indicator for the usability and service life, which cannot be explained from friction alone. Thereby, the viscosity of the base oil, the grease consistency and additives were identified as relevant grease formulation parameters to allow for fluid film (re-)formation and removal of wear particles.\nOriginality/value - To the authors' best knowledge, this is the first approach to systematically analyze the friction and wear behavior of technical ceramic disks of water tap mixer cartridges in dependency on the temperature as well as the used lubricating grease. This approach is relevant for developing screening test strategies as well as for the selection of lubricants for water tap applications.\nPeer review - The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0334/";s:34:"\x00App\Entity\Publication\x00timesCited";i:0;s:35:"\x00App\Entity\Publication\x00fundingText";s:618:"Optimol Instruments Prueftechnik GmbH, Germany, is thanked for the collaboration and the permission to use the required equipment and to publish the results. Carl Bechem GmbH is thanked for providing the lubricants and for the permission to publish the results. M. Ziegler, B. Rothammer, M. Bartz and S. Wartzack greatly acknowledge the continuous support of the Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Germany. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica (PIA).";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:813;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5016;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:14888;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:11;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13486;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1785;s:29:"\x00App\Entity\Publication\x00title";s:97:"Evaluation of the wear-resistance of DLC-coated hard-on-soft pairings for biomedical applications";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000982260600001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"523";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"JUN 15";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.1016/j.wear.2023.204728";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1647:"Diamond-like carbon (DLC) coatings deposited on the articulating surfaces of total hip or knee arthroplasties have the potential to enhance the overall biotribological behavior and longevity. In this contribution, we employ an ultrahigh molecular weight polyethylene ball-on-three cobalt chromium or titanium alloy pin configuration lubricated by simulated body fluid to effectively carry out screening tests. Thus, the influence of the choice of the coated component (metallic and/or polymeric) as well as the differences between a higher and lower load case with non- and conventionally cross-linked polyethylene were studied. The studied coating systems featured excellent mechanical properties with a substantial enhancement of indentation hardness and elastic modulus ratios. The adhesion of the coatings as determined in modified scratch tests can be considered as very good to polymeric and as satisfactory to metallic substrates, thus confirming the potential for the use in total joint arthroplasties. Although the coatings predominantly led to an increase in friction due to the considerably higher roughness, wear was substantially reduced. While only the metallic components were mostly coated in studies reported in literature, our investigation showed that a coating of the polymer component in particular is of decisive importance for enhancing the wear performance and increasing the service life of load-bearing implants. Moreover, single sided coating results in higher wear of the uncoated counter-part. Therefore, coating systems deposited on both articulating surfaces, polymeric and metallic, should be pursued in the future.";s:34:"\x00App\Entity\Publication\x00timesCited";i:6;s:35:"\x00App\Entity\Publication\x00fundingText";s:610:"Anton Paar Germany GmbH, Ostfildern-Scharnhausen, Germany, is thanked for the collaboration and the permission to use the required equipment and to publish the results. The Laboratory for Biomechanics and Implant Research at Heidelberg University Hospital, Germany is thanked for providing the SBF. B. Rothammer, K. Neusser, M. Bartz, and S. Wartzack greatly acknowledge the continuous support of the Frie-drich-Alexander-University Erlangen-Nuremberg (FAU) , Germany. M. Marian greatly acknowledges the financial support from the Vice-rrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:657;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5017;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:9642;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:12;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13499;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1786;s:29:"\x00App\Entity\Publication\x00title";s:100:"Wear Mechanism of Superhard Tetrahedral Amorphous Carbon (ta-C) Coatings for Biomedical Applications";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000916725400001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"7";s:30:"\x00App\Entity\Publication\x00volume";s:2:"10";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"MAR";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:22:"10.1002/admi.202202370";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1438:"Tetrahedral amorphous carbon (ta-C) coatings have the potential to protect biomedical implants from wear and increase their service life. This study elucidates the biocompatibility, mechanical properties, adhesion, and wear resistance of ta-C coatings fabricated by physical vapor deposition on cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloys as well as ultrahigh molecular weight polyethylene (UHMWPE). Satisfactory cytocompatibility is verified using contact angle and surface tension measurements as well as indirect and direct cell testing. Scratch testing demonstrates excellent adhesion to the substrates and as confirmed by nanoindentation, the coatings represent an up to 13-fold and 182-fold increase in hardness on the hard and soft materials. In metal pin-on-UHMWPE disk sliding experiments under simulated body fluid lubrication, the wear rates of the disk are reduced by 48% (against CoCr) and 73% (against Ti64) while the pin wear rates are reduced by factors of 20 (CoCr) and 116 (Ti64) compared to uncoated pairings. From optical and laser scanning microscopy, Raman measurements, and particle analyses, it is shown that the underlying substrates remain well protected. Nonetheless, focused ion beam scanning electron microscopy revealed coating process-related and thermally driven subductions as well as tribologically induced near-surface fatigue, which can potentially constitute critical wear mechanisms.";s:34:"\x00App\Entity\Publication\x00timesCited";i:6;s:35:"\x00App\Entity\Publication\x00fundingText";N;s:31:"\x00App\Entity\Publication\x00journal";r:215;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5018;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:18771;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:13;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13500;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1787;s:29:"\x00App\Entity\Publication\x00title";s:81:"Guest editorial: Insights into the work of a new generation of young tribologists";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001049967200001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";s:7:"729-729";s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"7";s:30:"\x00App\Entity\Publication\x00volume";s:2:"75";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"AUG 18";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:23:"10.1108/ILT-09-2023-549";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";N;s:34:"\x00App\Entity\Publication\x00timesCited";i:0;s:35:"\x00App\Entity\Publication\x00fundingText";N;s:31:"\x00App\Entity\Publication\x00journal";r:775;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:1;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";s:53:"Publicación pendiente de validar, material editorial";s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:14;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13505;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1788;s:29:"\x00App\Entity\Publication\x00title";s:121:"Additively manufactured MAX- and MXene-composite scaffolds for bone regeneration- recent advances and future perspectives";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001029829700001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"225";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"MAY";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.colsurfb.2023.113282";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1543:"Human bones can suffer from various injuries, such as fractures, bone cancer, among others, which has initiated research activities towards bone replacement using advanced bio-materials. However, it is still challenging to design bio-scaffolds with bone-inducing agents to regenerate bone defects. In this regard, MAX-phases and MXenes (early transition metal carbides and/or nitrides) have gained notable attention due to their unique hydrophilicity, bio-compatibility, chemical stability, and photothermal properties. They can be used in bone tissue engineering as a suitable replacement or reinforcement for common bio-materials (polymers, bio-glasses, metals, or hydroxyapatite). To fabricate bio-scaffolds, additive manufacturing is prospective due to the possibility of controlling porosity and creating complex shapes with high resolution. Until now, no comprehensive article summarizing the existing state-of-the-art related to bone scaffolds reinforced by MAX-phases and MXenes fabricated by additive manufacturing has been published. Therefore, our article addresses the reasons for using bone scaffolds and the importance of choosing the most suitable material. We critically discuss the recent developments in bone tissue engineering and regenerative medicine using MAX-phases and MXenes with a particular emphasis on manufacturing, mechanical properties, and bio-compatibility. Finally, we discuss the existing challenges and bottlenecks of bio-scaffolds reinforced by MAX-phases and MXenes before deriving their future potential.";s:34:"\x00App\Entity\Publication\x00timesCited";i:4;s:35:"\x00App\Entity\Publication\x00fundingText";s:490:"A. Rosenkranz gratefully acknowledges the financial support given by ANID within the project Fondecyt 1220331 and Fondequip 190057. Moreover, we are thankful for the continuous support of the K. N. Toosi University of Technology, the University of Guilan, and the Iran University of Medical Science. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica (PIA) .";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:814;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:1;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5019;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:16912;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:15;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13507;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1789;s:29:"\x00App\Entity\Publication\x00title";s:117:"Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001017995300001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"466";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:6:"AUG 15";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.surfcoat.2023.129682";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1428:"Polymer components fabricated by additive manufacturing typically show only moderate strength and low temperature stability, possibly leading to severe wear and short lifetimes especially under dry tribological sliding. To tackle these shortcomings, we investigated the combination of single- and multi-scale textures directly fabricated by digital light processing with amorphous diamond-like carbon (DLC) coatings. The topography of the samples and conformity of the coatings on the textures are assessed and their tribological behaviour under dry conditions is studied. We demonstrate that the surface textures have a detrimental tribological effect on the uncoated samples. This changes with the application of DLC coatings since friction substantially reduces and wear of the textures is not observed anymore. These trends are attributed to the protection of the underlying polymer substrate by the coatings and a reduced contact area. The best tribological performance is found for a coating with highest hardness and hardness-to-elasticity ratios. Moreover, multi-scale textures perform slightly better than single-scale textures due to a smaller real contact area. Summarizing, we verified that the high flexibility and low production costs of 3D printing combined with the excellent mechanical and tribological properties of DLC results in synergistic effects with an excellent performance under dry sliding conditions.";s:34:"\x00App\Entity\Publication\x00timesCited";i:5;s:35:"\x00App\Entity\Publication\x00fundingText";s:786:"M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica. B. Rothammer greatly acknowledges the continuous support of the Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Germany. A. Rosenkranz gratefully acknowledges the financial support given by ANID-CONICYT within the projects Fondecyt Regular 1220331 and Fondequip EQM190057. D. Zambrano and A. Rosenkranz acknowledge the final support given by ANID-Chile within the project Fondecyt Postdoctorado 3220165. G. Boidi thanks the "Austrian COMET-Programme" (Project InTribology1, no. 872176) for the financial support. B. Merle acknowledges funding by the German Research Foundation DFG (ME 4368/9).";s:31:"\x00App\Entity\Publication\x00journal";r:703;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5020;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:10108;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:16;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:13525;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:1790;s:29:"\x00App\Entity\Publication\x00title";s:106:"Subject-specific tribo-contact conditions in total knee replacements: a simulation framework across scales";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000991168400001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";s:9:"1395-1410";s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"4";s:30:"\x00App\Entity\Publication\x00volume";s:2:"22";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"AUG";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.1007/s10237-023-01726-1";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1221:"Fundamental knowledge about in vivo kinematics and contact conditions at the articulating interfaces of total knee replacements are essential for predicting and optimizing their behavior and durability. However, the prevailing motions and contact stresses in total knee replacements cannot be precisely determined using conventional in vivo measurement methods. In silico modeling, in turn, allows for a prediction of the loads, velocities, deformations, stress, and lubrication conditions across the scales during gait. Within the scope of this paper, we therefore combine musculoskeletal modeling with tribo-contact modeling. In the first step, we compute contact forces and sliding velocities by means of inverse dynamics approach and force-dependent kinematic solver based upon experimental gait data, revealing contact forces during healthy/physiological gait of young subjects. In a second step, the derived data are employed as input data for an elastohydrodynamic model based upon the finite element method full-system approach taking into account elastic deformation, the synovial fluid's hydrodynamics as well as mixed lubrication to predict and discuss the subject-specific pressure and lubrication conditions.";s:34:"\x00App\Entity\Publication\x00timesCited";i:0;s:35:"\x00App\Entity\Publication\x00fundingText";s:369:"B. Rothammer, A. Wolf, A. Winkler, J. Miehling, M. Bartz, and S. Wartzack greatly acknowledge the continuous support of Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Germany. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:330;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5021;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:17753;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:17;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:15130;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2010;s:29:"\x00App\Entity\Publication\x00title";s:55:"Ensemble Deep Learning for Wear Particle Image Analysis";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001114430100001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:2:"11";s:30:"\x00App\Entity\Publication\x00volume";s:2:"11";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"NOV";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.3390/lubricants11110461";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1620:"This technical note focuses on the application of deep learning techniques in the area of lubrication technology and tribology. This paper introduces a novel approach by employing deep learning methodologies to extract features from scanning electron microscopy (SEM) images, which depict wear particles obtained through the extraction and filtration of lubricating oil from a 4-stroke petrol internal combustion engine following varied travel distances. Specifically, this work postulates that the amalgamation of ensemble deep learning, involving the combination of multiple deep learning models, leads to greater accuracy compared to individually trained techniques. To substantiate this hypothesis, a fusion of deep learning methods is implemented, featuring deep convolutional neural network (CNN) architectures including Xception, Inception V3, and MobileNet V2. Through individualized training of each model, accuracies reached 85.93% for MobileNet V2 and 93.75% for Inception V3 and Xception. The major finding of this study is the hybrid ensemble deep learning model, which displayed a superior accuracy of 98.75%. This outcome not only surpasses the performance of the singularly trained models, but also substantiates the viability of the proposed hypothesis. This technical note highlights the effectiveness of utilizing ensemble deep learning methods for extracting wear particle features from SEM images. The demonstrated achievements of the hybrid model strongly support its adoption to improve predictive analytics and gain insights into intricate wear mechanisms across various engineering applications.";s:34:"\x00App\Entity\Publication\x00timesCited";i:0;s:35:"\x00App\Entity\Publication\x00fundingText";s:180:"Max Marian greatly acknowledges the support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica (PIA).";s:31:"\x00App\Entity\Publication\x00journal";r:359;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5146;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:12465;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:18;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:15131;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2011;s:29:"\x00App\Entity\Publication\x00title";s:64:"Physics-Informed Machine Learning-An Emerging Trend in Tribology";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001113837200001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:2:"11";s:30:"\x00App\Entity\Publication\x00volume";s:2:"11";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"NOV";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2023;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.3390/lubricants11110463";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1419:"Physics-informed machine learning (PIML) has gained significant attention in various scientific fields and is now emerging in the area of tribology. By integrating physics-based knowledge into machine learning models, PIML offers a powerful tool for understanding and optimizing phenomena related to friction, wear, and lubrication. Traditional machine learning approaches often rely solely on data-driven techniques, lacking the incorporation of fundamental physics. However, PIML approaches, for example, Physics-Informed Neural Networks (PINNs), leverage the known physical laws and equations to guide the learning process, leading to more accurate, interpretable and transferable models. PIML can be applied to various tribological tasks, such as the prediction of lubrication conditions in hydrodynamic contacts or the prediction of wear or damages in tribo-technical systems. This review primarily aims to introduce and highlight some of the recent advances of employing PIML in tribological research, thus providing a foundation and inspiration for researchers and R&D engineers in the search of artificial intelligence (AI) and machine learning (ML) approaches and strategies for their respective problems and challenges. Furthermore, we consider this review to be of interest for data scientists and AI/ML experts seeking potential areas of applications for their novel and cutting-edge approaches and methods.";s:34:"\x00App\Entity\Publication\x00timesCited";i:1;s:35:"\x00App\Entity\Publication\x00fundingText";s:114:"This work was partially supported by the European Regional Development Fund in Bavaria under the Gate2HPC project.";s:31:"\x00App\Entity\Publication\x00journal";r:359;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5147;s:33:"\x00App\Entity\Publication\x00publisher";r:1336;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:19;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:24836;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2692;s:29:"\x00App\Entity\Publication\x00title";s:57:"Micro-scale deterministic asperity contact FEM simulation";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000919189500001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"4";s:30:"\x00App\Entity\Publication\x00volume";s:2:"10";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:5:"DEC 1";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:24:"10.1088/2051-672X/acac42";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1719:"There are numerous stochastic approaches to indirectly couple solid asperity contact with the fluid hydrodynamics in the region of boundary or mixed lubrication. In contrast, deterministic approaches for calculating solid contact pressure curves offer advantages in terms of flexibility and accuracy. This contribution aims at providing a publicly available, automated method to derive solid asperity contact pressure curves for given surfaces, implemented in commercial software based upon Finite Element Method (FEM). Solid asperity pressure curves were calculated and compared to various established stochastic models for artificially generated surfaces and surfaces measured via laser scanning microscopy. Thereby, it was shown that the usage of artificially generated surfaces based on stochastic parameters only allowed an approximate representation of real measured surfaces as well as to lower calculated pressures, so that 3D measurement data is preferred to calculate the contact pressure. Moreover, the values of the FEM model were in a similar region but slightly below the stochastic models over a wide range of gap distances and the asperity pressure graphs were more curved/convex. At very small gap height values, the pressure in the FEM model reached values similar to the stochastic models. This was attributed to the fact that real surface topographies were considered, also allowing for peak-to-valley pairings instead of merely asperity-to-asperity contacts, as well as to the fact that the roughness and mean planes were re-calculated in each simulation step, while most stochastic approaches neglect the elastic deformation of asperities when determining the distances between the rough surfaces.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:496:"The authors thank the Institute of Material Systems Modeling at Helmholtz-Zentrum Hereon, Germany, for the collaboration and the permission to publish the results. A. Winkler and S. Wartzack greatly acknowledge the continuous support of the Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Germany. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica (PIA).";s:31:"\x00App\Entity\Publication\x00journal";r:143;s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:20;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:24837;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2693;s:29:"\x00App\Entity\Publication\x00title";s:76:"Roadmap for 2D materials in biotribological/biomedical applications-A review";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000879227000001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"307";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"SEP";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:25:"10.1016/j.cis.2022.102747";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:750:"The human body involves a large number of systems subjected to contact stresses and thus experiencing wear and degradation. The limited efficacy of existing solutions constantly puts a significant financial burden on the healthcare system, more importantly, patients are suffering due to the complications following a partial or total system failure. More effective strategies are highly dependent on the availability of advanced functional materials demonstrating excellent tribological response and good biocompatibility. In this article, we review the recent progress in implementing two-dimensional (2D) materials into bio-applications involving tribological contacts. We further summarize the current challenges for future progress in the field.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:357:"M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile. D.Berman acknowledges support by the National Science Foundation (NSF) (Award No. 2018132). A. Rosenkranz gratefully acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331.";s:31:"\x00App\Entity\Publication\x00journal";r:631;s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:21;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:24847;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2694;s:29:"\x00App\Entity\Publication\x00title";s:65:"Tribological Behavior of Additively Manufactured Metal Components";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:000902537700001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"6";s:30:"\x00App\Entity\Publication\x00volume";s:1:"6";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"DEC";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2022;s:27:"\x00App\Entity\Publication\x00doi";s:19:"10.3390/jmmp6060138";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1170:"Additive manufacturing (AM) has recently become an increasingly popular form of production due to its advantages over traditional manufacturing methods, such as accessibility, the potential to produce parts with complex geometry, and reduced waste. For the widespread industry adoption of AM components, metal AM has the most potential. The most popular methods of metal AM are powder-based manufacturing techniques. Due to the layer-by-layer nature of AM, the mechanical and tribological properties of an additive manufactured part differs from those of traditionally manufactured components. For the technology to develop and grow further, the tribological properties of AM components must be fully explored and characterized. The choice of material, surface textures, and post-processing methods are shown to have significant impact on friction and wear. Therefore, this paper focuses on reviewing the existing literature with an emphasis on the development of advanced materials for AM applications as well as the optimization of the resulting surface quality via post-processing and presents areas of interest for further examination in this prospective technology.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:259:"A. Rosenkranz gratefully acknowledges the financial support given by ANID within the project Fondecyt Regular 1220331. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:1104;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";N;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";N;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:22;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:25478;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2830;s:29:"\x00App\Entity\Publication\x00title";s:97:"Additive Manufacturing in the Maritime Industry: A Perspective on Current Trends and Future Needs";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001222948400003";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";s:5:"36-43";s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"1";s:30:"\x00App\Entity\Publication\x00volume";s:2:"40";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"FEB";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2024;s:27:"\x00App\Entity\Publication\x00doi";s:21:"10.5957/JSPD.05230005";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1252:"Additive manufacturing (AM) has seen slow growth thus far in the maritime industry. Like other industries, maritime companies and institutions have started using AM for prototyping and product development needs but is now beginning to expand into production of end use parts and production tooling. The slow adoption can mainly be attributed to a previous lack of education in additive technology and strategies, current lack of reliability testing of additive machines in a marine environment, and the need for classification and certification of parts and machines before shipowners and crews will likely adopt for widespread use. This article provides a perspective of recent AM activities within the industry and discusses the need for research in key areas before widespread utilization can occur. Current use includes a recent push in maritime education, surveys of maritime workers and stakeholders, and fabrication of replacement parts, propellers, and boat hulls. Prospective key areas with the need for further research include 1) use-cases for replacement parts on ship, 2) economic feasibility of putting 3D printers on board, 3) standards, certification, and quality assurance, and 4) reliability and repeatability in a marine environment.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:474:"J. Garofalo acknowledges the efforts, enthusiasm, and service con- tributions of his students, the Midshipmen of the U.S. Merchant Marine Academy. M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica. A. Rosenkranz gratefully acknowledges the financial support given by ANID-CONICYT within the projects Fondecyt 1220331 and Fondequip EQM190057.";s:31:"\x00App\Entity\Publication\x00journal";O:33:"Proxies\__CG__\App\Entity\Journal":8:{s:17:"__isInitialized__";b:0;s:22:"\x00App\Entity\Journal\x00id";i:1142;s:24:"\x00App\Entity\Journal\x00name";N;s:24:"\x00App\Entity\Journal\x00ISSN";N;s:24:"\x00App\Entity\Journal\x00ISBN";N;s:25:"\x00App\Entity\Journal\x00eISSN";N;s:32:"\x00App\Entity\Journal\x00publications";N;s:33:"\x00App\Entity\Journal\x00impactFactors";N;}s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:1;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5372;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:30884;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:23;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:25485;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2831;s:29:"\x00App\Entity\Publication\x00title";s:146:"Influence of micro-texture radial depth variations on the tribological and vibration characteristics of rolling bearings under starved lubrication";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001207942700001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"194";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"JUN";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2024;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.triboint.2024.109545";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1253:"Surface micro-texturing involves creating microscopic pits or textures, serving as lubricant reservoirs to enhance lubrication distribution, potentially reducing friction and wear. This study specifically delves into the influence of varied depth patterns of pits on the operational performance of textured rolling bearings under severe lubrication conditions. Five distinct patterns with a fixed pit diameter (250 mu m) and different depth variations (concave, decreasing, increasing, convex, and horizontal) were introduced on the shaft rings of cylindrical roller thrust bearings using the laser marking method. Wear tests were conducted under starved lubrication condition. Wear loss and signal analysis highlight the profound effect of depth variations, whereby bearings with shallow pits near the outer side of their working surfaces exhibit longer lubrication times, improved tribological performance, and enhanced vibration characteristics. Notably, the convex pattern stands out for providing comprehensive and favorable tribological and vibration properties. This research contributes valuable insights for the optimal design of micro-textures for rolling bearings, paving the way for enhanced efficiency and reliability in mechanical systems.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:440:"S. Ramteke and M. Marian kindly acknowledge the financial support given by ANID-Chile within the project Fondecyt de Postdoctorado No 3230027. R. Long greatly acknowledges the financial support from the Natural Science Foundation of Liaoning Province (No. 2023-MS-234) , the Scientific Research Fund of Liaoning Provincial Education Department (No. LJKMZ20220800) as well as the National Natural Science Foundation of China (No. 52275156) .";s:31:"\x00App\Entity\Publication\x00journal";r:559;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:1;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5373;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:34018;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:24;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:26281;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2874;s:29:"\x00App\Entity\Publication\x00title";s:48:"Recent Advances in Machine Learning in Tribology";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001233482800001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";s:1:"5";s:30:"\x00App\Entity\Publication\x00volume";s:2:"12";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"MAY";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2024;s:27:"\x00App\Entity\Publication\x00doi";s:26:"10.3390/lubricants12050168";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";N;s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";N;s:31:"\x00App\Entity\Publication\x00journal";r:359;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:1;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5393;s:33:"\x00App\Entity\Publication\x00publisher";O:35:"Proxies\__CG__\App\Entity\Publisher":11:{s:17:"__isInitialized__";b:0;s:24:"\x00App\Entity\Publisher\x00id";i:31391;s:27:"\x00App\Entity\Publisher\x00title";N;s:31:"\x00App\Entity\Publisher\x00isoAbbrev";N;s:26:"\x00App\Entity\Publisher\x00ISSN";N;s:27:"\x00App\Entity\Publisher\x00EISSN";N;s:34:"\x00App\Entity\Publisher\x00impactFactor";N;s:32:"\x00App\Entity\Publisher\x00percentile";N;s:23:"\x00App\Entity\Publisher\x00Q";N;s:34:"\x00App\Entity\Publisher\x00publications";N;s:26:"\x00App\Entity\Publisher\x00year";N;}s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:25;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:26476;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2910;s:29:"\x00App\Entity\Publication\x00title";s:131:"Synergistic Effects of Graphene-added Lubricants and Surface Micro-texturing on the Tribological Behavior of Thrust Roller Bearings";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001261533000001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"198";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"OCT";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2024;s:27:"\x00App\Entity\Publication\x00doi";s:30:"10.1016/j.triboint.2024.109908";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1369:"The synergistic effects of graphene additive and surface micro-texturing on the friction and wear properties of rolling bearings are still a research gap. To this end, the tribological behavior of dimples textured thrust roller bearings (81107TN) are investigated under starved lubrication. The lubricants contained different mass fractions (0.06 %, 0.10 % and 0.14 %) of graphene. The evenly distributed dimples (diameter: 60 mu m or 250 mu m; depth: 1 mu m or 8 mu m) were manufactured only on the raceways of the shaft washers. By comparing the coefficients of friction (COF), wear losses and worn surfaces, the influence of various dimples dimensions and mass fractions of graphene on the tribological behavior of rolling bearings is discussed. The results show that appropriate dimple parameters and a suitable mass fraction of graphene can synergistically have a positive effect on the tribological properties of bearings. In this work, the textured group, with a dimple-diameter of 60 mu m and a dimple-depth of 1 mu m, can provide the best comprehensive friction-reducing and wear-reducing performance for the mass fraction of graphene with 0.10 wt%. Compared to the smooth bearings lubricated with base oil, its mean COF is reduced by 31 % and its wear loss by 35 %. This work can be a valuable reference for the improvement of rolling bearings and lubricants.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:665:"R. Long greatly acknowledges the financial support from the Natural Science Foundation of Liaoning province (No. 2023 -MS -234) , the Scientific Research Fund of Liaoning Provincial Education Department (No. LJKMZ20220800) , "Da Biao Li Xiang" project of Shenyang University of Chemical Technology (No. 512000001185) as well as the National Natural Science Foundation of China (No. 52275156) . M. Marian greatly acknowledges the financial support from the Vicerrectoria Academica (VRA) of the Pontificia Universidad Catolica de Chile within the Programa de Insercion Academica (PIA) as well as from Schaeffler FAG Foundation within the Future Technology Award 2022.";s:31:"\x00App\Entity\Publication\x00journal";r:559;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:1;s:33:"\x00App\Entity\Publication\x00validated";b:1;s:32:"\x00App\Entity\Publication\x00sidingId";i:5409;s:33:"\x00App\Entity\Publication\x00publisher";r:1758;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";N;s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";i:100;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}i:26;O:28:"App\Entity\PublicationAuthor":12:{s:32:"\x00App\Entity\PublicationAuthor\x00id";i:26482;s:39:"\x00App\Entity\PublicationAuthor\x00firstname";s:3:"Max";s:38:"\x00App\Entity\PublicationAuthor\x00lastname";s:6:"Marian";s:44:"\x00App\Entity\PublicationAuthor\x00externalAuthor";N;s:36:"\x00App\Entity\PublicationAuthor\x00author";r:16;s:41:"\x00App\Entity\PublicationAuthor\x00publication";O:37:"Proxies\__CG__\App\Entity\Publication":30:{s:17:"__isInitialized__";b:1;s:26:"\x00App\Entity\Publication\x00id";i:2911;s:29:"\x00App\Entity\Publication\x00title";s:68:"2D materials for Tribo-corrosion and -oxidation protection: A review";s:26:"\x00App\Entity\Publication\x00UT";s:19:"WOS:001260688100001";s:31:"\x00App\Entity\Publication\x00doctype";s:0:"";s:29:"\x00App\Entity\Publication\x00pages";N;s:29:"\x00App\Entity\Publication\x00ISSUE";N;s:30:"\x00App\Entity\Publication\x00volume";s:3:"331";s:38:"\x00App\Entity\Publication\x00publishedMonth";s:3:"SEP";s:37:"\x00App\Entity\Publication\x00publishedYear";i:2024;s:27:"\x00App\Entity\Publication\x00doi";s:25:"10.1016/j.cis.2024.103243";s:28:"\x00App\Entity\Publication\x00ISSN";N;s:28:"\x00App\Entity\Publication\x00ISBN";N;s:32:"\x00App\Entity\Publication\x00keywords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:36:"\x00App\Entity\Publication\x00keywordsPlus";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:34:"\x00App\Entity\Publication\x00wosRecords";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:30:"\x00App\Entity\Publication\x00grants";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:42:"\x00App\Entity\Publication\x00publicationAuthors";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:35:"\x00App\Entity\Publication\x00updatedDate";O:8:"DateTime":3:{s:4:"date";s:26:"2024-10-28 00:00:00.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:16:"America/Santiago";}s:32:"\x00App\Entity\Publication\x00abstract";s:1605:"The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.";s:34:"\x00App\Entity\Publication\x00timesCited";N;s:35:"\x00App\Entity\Publication\x00fundingText";s:998:"S. Ramteke and M. Marian kindly acknowledge the financial support given by ANID-Chile within the project Fondecyt de Postdoctorado N degrees 3230027. A. Rosenkranz gratefully acknowledges the financial support of ANID-Chile within the projects Fondecyt Regular 1220331 and Fondequip EQM190057 as well as and the Millennium Science Initiative Program (NCN2023_007) . This work was also funded by the Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023) , supported by the Millennium Scientific Initiative from ANID-Chile. M. Marian greatly acknowledges the financial support from Programa de Insercion Academica (PIA) 2022 from the Vicerrectoria Academic y Prorectoria of Pontificia Universidad Catolica de Chile, the Schaeffler FAG Foundation within the Future Technology Award 2022, and ANID- Chile within project DFG220004. M. Marian further acknowledges the continuous support from Leibniz University Hannover, Germany and the DEAL agreement funding open access publication.";s:31:"\x00App\Entity\Publication\x00journal";r:631;s:41:"\x00App\Entity\Publication\x00interdisciplinary";b:0;s:33:"\x00App\Entity\Publication\x00validated";b:0;s:32:"\x00App\Entity\Publication\x00sidingId";N;s:33:"\x00App\Entity\Publication\x00publisher";r:1020;s:38:"\x00App\Entity\Publication\x00publicComments";N;s:39:"\x00App\Entity\Publication\x00privateComments";s:72:"MAGDALENA WALCZAK NO TIENE ASOCIADA A SU RESEARCHER ID ESTA PUBLICACIÓN";s:39:"\x00App\Entity\Publication\x00publicationType";s:5:"paper";}s:43:"\x00App\Entity\PublicationAuthor\x00organizations";O:33:"Doctrine\ORM\PersistentCollection":2:{s:13:"\x00*\x00collection";O:43:"Doctrine\Common\Collections\ArrayCollection":1:{s:53:"\x00Doctrine\Common\Collections\ArrayCollection\x00elements";a:0:{}}s:14:"\x00*\x00initialized";b:0;}s:43:"\x00App\Entity\PublicationAuthor\x00participation";N;s:43:"\x00App\Entity\PublicationAuthor\x00masterStudent";b:0;s:40:"\x00App\Entity\PublicationAuthor\x00phdStudent";b:0;s:38:"\x00App\Entity\PublicationAuthor\x00ucNotIng";b:0;s:37:"\x00App\Entity\PublicationAuthor\x00postdoc";b:0;}}}s:14:"\x00*\x00initialized";b:1;}}}i:1;b:1;i:2;N;i:3;a:0:{}i:4;a:0:{}}}" |